摘要
提出了一个新的三维混沌系统。通过调节系统中的参数,使系统在保持混沌动力学行为的同时分别具有多种类型的平衡点,即一个不稳定平衡点、无平衡点、无穷平衡点和一个稳定平衡点。此外,随着参数和初始值的变化,发现系统是一个大范围的混沌系统,且在无对称性条件下具有共存吸引子。分析了系统的基本动力学行为,包括系统的相图、Lyapunov指数谱和分岔图。利用拓扑马蹄理论和数值计算,找到了系统的拓扑马蹄,并获得拓扑熵,进一步从理论上证明系统的混沌特性。
-
单位重庆邮电大学; 通信与信息工程学院