摘要

针对手写阿拉伯单词书写连笔,且相似词较多的特点,该文提出一种新的脱机手写文字识别算法。该算法以固定组件为成分拆分阿拉伯单词,构建自组件特征至单词类别的加权贝叶斯推理模型。算法结合单词组件分割、多级混合式组件识别、组件加权系数估计等,计算单词类别的后验概率并得到单词识别结果。在IFN/ENIT库上的实验,获得了90.03%的单词识别率,证实组件分解对笔画连写具有鲁棒性,组件识别能提高相似词的辨别能力,而且该算法所需训练类别少,易向大词汇量识别扩展。