摘要
采用MATLAB物理引擎联合PYTHON搭建了一个六轴机械臂,并模拟带有扰动的复杂控制环境,为机械臂训练提供现实中无法提供的试错环境,提出使用强化学习中PPO算法对传统PID控制算法进行改进,引入多智能体思想,并根据PID三个参数对控制系统的不同影响及六轴机械臂的特性,将三个参数分别作为不同的智能个体进行训练,实现多智能体自适应调整参数的新型多智能体自适应PID算法。仿真结果表明,该算法的训练收敛性优于MA-DDPG与MA-SAC算法,与传统PID算法的控制效果相比,在遇到扰动及振荡的情况下,能够更有效地抑制振荡,并具有更低的超调量和调整时间,控制过程更为平缓,有效提高了机械臂的控制精度,证明了该算法的鲁棒性及有效性。
-
单位上海航天设备制造总厂; 上海电机学院