摘要

为了拓展涡流搜索算法的应用能力,提升其求解复杂优化尤其是大规模复杂优化问题的性能,本文提出了一种基于流场吸引流动、逐维半径试探更新和领导层决策机制的动态涡流搜索算法.首先,本文在算法中引入压强差的概念,使候选解依据压强差进一步向着较优解移动,提高算法整体的搜索质量;然后,算法通过逐维半径更新策略,有效避免了在某一维陷入局部极值的情况;最后,本文在中心点的更新中引入领导层决策机制,提高算法快速确定最佳区域的能力.在计算机仿真部分,本文将该改进算法与多组具有不同代表性的对比算法分别在CEC2017套件的100维和CEC2010套件的1 000维上进行了极值优化分析,结果表明改进后的算法无论是在高维问题还是大规模复杂问题上的寻优结果都能领先其他代表性对比算法多个数量级,具有很好的收敛性能.