摘要

建立一种改进深度学习模型,用于农业自动化检测和识别棉花顶芽,以提高棉花劳作工作效率。通过把深度网络模型ResNet-101融入到基于深度学习(Deep Learning, DL)机制的感兴趣区域的目标检测算法Faster RCNN中,得到统一的多结构层次的改进深度学习模型。对比实验验证结果表明,相较于传统Faster RCNN模型,该模型在棉花顶芽探测和识别性能上有较大的提升。本研究提出的改进深度学习模型取得了比较好的平均精度,为棉花顶芽的探测和识别提出新的解决方案,为农业生产智能化提供新的思路。

全文