摘要
针对传统流形正则化加权回归(WDMR)模型对新样本数据预测的局限性,提出基于半监督局部线性嵌入(LLE)算法的WDMR建模方法.先结合半监督流形学习的思想,建立了数据驱动的半监督LLE算法的WDMR模型.然后,根据轮轨磨耗检测数据进行了车轮踏面磨耗量的预测实验.结果表明,与传统的WDMR模型比较,半监督LLE算法的WDMR模型具有更好的拟合与泛化性能,预测精度更高,将该模型用于现场车轮踏面磨耗量的预测是有效的.
-
单位电子工程学院; 华东交通大学