摘要
为提高被动传感器观测噪声为含时变有色噪声、跳变噪声的混合噪声时容积卡尔曼滤波(CKF)算法的滤波精度和稳定性,提出一种自适应容积卡尔曼滤波(ACKF)算法。在ACKF算法中,在基本CKF算法基础上,采用观测重构、待定系数去相关方法,推导得到有色噪声条件下的容积卡尔曼滤波算法。针对时变有色噪声和跳变噪声导致滤波精度受损的问题,引入噪声方差在线修正及有害观测剔除的思想,进行了ACKF算法设计。仿真结果表明,与基本CKF算法相比,ACKF算法在x轴、y轴、z轴3个方向得到的被动定位精度分别提升了24.75%、32.57%和28.48%,具有更高的滤波稳定性和精度。