摘要
针对最小化最大完工时间、总碳排放以及总拖期时间的具有学习效应的半导体晶圆制造绿色车间调度问题,构建了双影响因素的新型学习效应模型,提出了改进的多元宇宙优化算法,并对其收敛性进行证明。通过对初始种群进行反向学习、宇宙个体进行莱维飞行扰动和对外部档案中的个体进行邻域搜索变异更新,产生新的父代个体,扩大了种群的多样性,避免算法陷入局部最优。通过对小规模和大规模测试算例的仿真实验,以及利用改进算法求解具有异质性机器的学习型半导体晶圆制造绿色车间调度问题,验证了本文所提出的算法对于求解具有学习效应的半导体晶圆制造绿色车间调度问题的有效性和可行性。
-
单位上海理工大学; 河南工学院