摘要

在数据挖掘和机器学习研究中,许多算法以离散值为处理对象,常常需要对连续属性进行离散化。以有监督和无监督离散化为线索,对典型离散化算法的基本思想进行梳理总结,并从时间复杂度以及对后续分类的影响等角度进行对比。最后对连续属性离散化的一些主要研究方向进行展望。