摘要

针对硬分类方法中无法解决的混合像元问题及软分类方法中全图共用一套端元进行混合像元分解所带来的弊端,提出了一种新的软硬分类方法。该方法通过分析目标地物在图像中的分布情况,自动计算判别阈值,将图像分为目标地物纯净区域、目标地物混合区域和非目标地物区域。对于目标地物纯净区域和非目标地物区域采用硬分类方法(支撑向量机)快速提取分类信息;对于目标地物混合区域采用软分类方法(端元可变的线性混合像元分解)提取目标地物丰度信息,最后得到目标地物软硬分类结果。通过对北京地区ALOS图像的应用试验,并将新方法与支撑向量机、线性光谱混合模型进行比较,新方法的RMSE值为0.203,总量精度达到95.48%,高于支撑...