摘要
与传统多类分类相比,多维分类中每个对象仍由一个示例(特征向量)表示,但同时与多个类别变量相关联,各类别变量基于异构类别空间刻画对象的语义.降维可以有效地缓解维度灾难并加速模型训练,已有多维分类研究均关注于设计性能更好的学习算法,尚未出现面向多维分类数据降维方面的工作.本文基于特征空间和语义空间的相关性,首次面向多维分类数据设计了一种名为SDeM的监督式线性降维方法.该方法使用Hilbert-Schmidt独立判据衡量两个空间的相关性,通过最大化投影特征空间与语义空间在该度量下的相关性确定投影矩阵.实验结果表明,相比于无监督式降维方法,SDeM所得降维特征更有利于多维分类方法取得更好的泛化性能.
- 单位