摘要
工业大数据具有多类型、多维度的特点,单一类型的深度学习网络结构无法充分提取数据中包含的性能退化特征。针对上述问题,提出一种可同时融合处理一维时间序列数据和二维图像数据的多输入混合深度学习网络健康因子构建模型。根据输入数据类型特点搭建的混合深度学习网络包含时间特征提取层、空间特征提取层、融合层和全连接层。时间特征提取层主要由叠加的多个长短时记忆(long short-term memory,LSTM)网络构成,用于提取一维时间序列数据中蕴含的时间特征。空间特征提取层主要由深度卷积神经网络(deep convolutional neural network,DCNN)构成,用于提取二维图像数据中的空间特征。融合层将时间特征与空间特征融合。最后,利用全连接层输出健康因子值。滚动轴承全寿命周期试验结果表明:本文提出的多输入混合深度学习网络的健康因子构建方法能够深度挖掘不同数据类型包含的性能退化信息,有效降低了性能退化曲线的离散性,有助于减小剩余寿命预测结果的不确定性,同时在一定程度上提高了单调性和趋势性,提高了剩余寿命预测精度。
- 单位