摘要
针对滚动轴承早期故障振动信号能量小且易受背景噪声干扰,从而导致故障特征提取困难等问题,提出基于变分模态分解(VMD)与独立分量分析(ICA)相结合的故障特征提取方法;该方法首先将原始故障信号进行VMD,得到若干正交的本征模态分量(IMF),然后依据峭度准则对分解后的信号进行分组重构,作为ICA的输入矩阵,最后采用Fast ICA算法实现故障信号与噪声信号的分离,从而提取机械故障特征信息;将轴承故障数据作为研究对象进行故障特征提取,并与集成经验模态分解-独立分量分析(EEMD-ICA)方法对特征信号的提取效果进行对比。结果表明,基于VMD与ICA的轴承故障特征提取方法提高了分解效率,解决了信号易受噪声干扰的问题,实现了轴承故障的精确诊断。
-
单位石家庄铁道大学; 电子工程学院