摘要
提出一种全新的集合强化物体碰撞优化算法(enhancedcollidingbodiesoptimization,ECBO)、变分模态分解(variational mode decomposition,VMD)、小波核极限学习机(wavelet kernel extreme learning machine,WKELM)的超短期风电功率多步预测模型。针对VMD方法自适应性低的问题,提出将ECBO方法用于VMD核心参数自动寻优,且基于加权排列熵(waveletkernelextremelearningmachine,WPE)算法思想来设计ECBO-VMD方法适应度函数,在提高VMD分解方法自适应性的同时实现了对各分解分量规律性的定量判别。采用ECBO-VMD对原始风电功率时间序列进行自适应分解,然后针对各分解分量建立WKELM预测模型并进行重构以得到最终预测结果。实验结果表明,该方法较现有单一及组合预测方法,多步预测精度均取得了大幅度提高,且预测误差分布可控制在较窄的期望预测区间内。
-
单位新疆铁道职业技术学院; 新疆大学