摘要

近年来,由于按需资源供应和即付即用付费模具有的明显优势,在云环境中执行大规模工作流应用程序越来越流行。云服务提供商以不同的价格提供不同性能的资源。为了提高资源的利用率,许多云服务商提供的瞬时资源的价格远低于正常资源的价格,Amazon EC2提供的竞价实例,可以大大降低工作流的执行成本。云中工作流调度的主要问题之一是在满足用户给定的截止时间约束的前提下,找到一种更廉价的调度方法。为解决这个问题,提出了一种使用竞价实例的截止时间约束工作流调度优化算法(Spot-ProLis)。该算法考虑了同一虚拟机上数据传输时长为零的情况,使用概率向上排序的方法对任务进行排序。在资源配置阶段,增加了竞价实例作为候选资源,有效降低了执行成本。实验结果表明,相比于经典算法ProLis,该算法在降低执行成本上具有显著优势。