摘要
近年来,深度神经网络在计算机视觉等领域取得了突破性进展,然而在射频信号处理领域,如电子支援侦察系统中的雷达辐射源识别任务,相关技术的发展仍处于起步阶段。在实际军事应用场景中,噪声的存在是影响深度神经网络性能发挥的关键因素。例如,在高信噪比环境下训练至收敛的深度模型分类器在处理低信噪比数据时往往性能下降严重。为了解决上述问题,提出了一种生成对抗式的去噪网络,实现了端到端的雷达信号去噪和脉内调制类型识别。该模型由生成器、鉴别器和分类器三部分组成,其中,生成器为编解码器结构,通过对称的上采样和下采样操作提取输入雷达信号中高阶特征向量,从噪声中恢复出干净信号;鉴别器则用来判断生成器输出去噪结果的真伪;在此基础上,将分类器与上述两者级联,使得去噪结果符合分类所需的语义信息。实验结果表明,所提算法在密集噪声环境下具备高质量的信号去噪效果和较高的分类准确度;与已有算法相比,算法在低信噪比环境数据上的迁移能力具有一定的优越性。
- 单位