摘要
基于序列的推荐是推荐系统研究的热点,序列中包含许多重要信息,如物品的点击规律和用户的兴趣,有效利用序列信息是提高推荐准确率的关键。为了有效提取序列信息,提出了ACRec推荐系统模型,利用多头自注意力机制和卷积神经网络从动态和静态两个方面提取序列信息,并利用矩阵分解增强模型中用户与序列的语义关系。在MovieLen-1M和VideoGames两大公开数据集上实验证明,相比于其他基线模型,ACRec提高了推荐的准确率,Hit@10分别提高了1.03%和18.4%,NDCG@10分别提高了2.6%和20.9%。
- 单位