摘要
近几年来,基于短语的统计翻译模型在机器翻译研究中受到普遍关注,并取得了较好的翻译性能。但是,由于目前基于短语的翻译系统在解码时采用精确匹配的策略,常常导致数据稀疏,一方面,有些短语在训练获得的短语表中找不到精确的匹配,使其成为未知短语;另一方面,短语表中大量的短语无法得到充分的利用。为此,我们提出了基于短语模糊匹配和句子扩展的翻译方法。对于不存在于短语表中的短语,通过模糊匹配的办法,寻找与其相似的短语,然后将所有相似短语用于替换原短语,从而生成扩展句子,在此基础上对所有扩展的句子进行翻译。由于并不是所有扩展后的句子都能提高原始句子的翻译效果,因此,我们在句子翻译完成后设置了组合分类器用于选择最...
-
单位中国科学院自动化研究所; 模式识别国家重点实验室