摘要

以黄河三角洲HJ-1A CCD遥感数据和滨海湿地翅碱蓬生物量实测数据为数据源,通过对比分析参数回归模型(单变量线性和非线性回归模型,多元线性逐步回归模型)和人工神经网络模型(BP网络、RBF网络、GRNN网络),构建黄河三角洲湿地翅碱蓬生长初期的生物量湿重遥感估算最优模型。研究表明:基于遥感信息变量能够建立生长初期翅碱蓬生物量湿重估算模型。尽管基于RDVI、MSAVI和PC2的3个变量的多元线性回归模型的拟合效果较优,但是以SAVI、MSAVI、RVI、DVI、RDVI和PC2等7个遥感信息变量构建的BP神经网络模型的精度更高,平均相对误差为12.73%,估算效果最优,能够满足较高精度的生物量...