摘要
针对压电陶瓷固有的迟滞非线性,设计了一种基于深度神经网络(DNN)的前馈补偿控制系统。该系统包含1个输入层、7个隐藏层和1个输出层。实验结果表明,开环情况下压电陶瓷的位移线性误差达8.91μm。施加神经网络前馈补偿后,压电陶瓷的最大位移误差降低到80 nm,稳态误差为±20 nm。进一步测试表明,在10~100 Hz输入频率下系统最大误差小于100 nm,均方根误差为0.01μm,验证了深度神经网络能够准确补偿压电陶瓷动态迟滞非线性,具有较好的频率泛化能力。
- 单位
针对压电陶瓷固有的迟滞非线性,设计了一种基于深度神经网络(DNN)的前馈补偿控制系统。该系统包含1个输入层、7个隐藏层和1个输出层。实验结果表明,开环情况下压电陶瓷的位移线性误差达8.91μm。施加神经网络前馈补偿后,压电陶瓷的最大位移误差降低到80 nm,稳态误差为±20 nm。进一步测试表明,在10~100 Hz输入频率下系统最大误差小于100 nm,均方根误差为0.01μm,验证了深度神经网络能够准确补偿压电陶瓷动态迟滞非线性,具有较好的频率泛化能力。