摘要

对光纤振动信号的有效识别是保证油气管道光纤预警系统运行的重要基础。针对传统光纤振动信号检测中单一分类方法的不足,提出一种基于AdaBoost集成学习的光纤振动信号识别分类算法。首先通过分析研究5类光纤振动信号的特征,选取样本熵、能量分布以及频带宽度作为三维特征向量,并将其分别送入决策树、支持向量机(SVM)以及以决策树作为基分类器的AdaBoost分类算法进行训练识别;其次通过交叉验证的方式对得到的模型进行参数优化和模型评价;最后对得到的模型进行对比测试实验。实验结果表明:以决策树作为基分类器的AdaBoost集成学习算法可以对不同振动类型进行有效识别,在光纤预警中对不同来源振动信号的识别具有一定意义。