摘要
提出一种基于粒子群优化算法的支持向量机网络,并把它应用到语音情感识别系统中。依据情感的维度空间模型,研究分析情感语音数据的韵律特征与音质特征。利用粒子群优化算法(PSO)训练网络的超参数以优化支持向量机模型,可快速地实现网络的收敛。最后在实验中比较线性核函数SVM、径向基核函数SVM与粒子群优化径向基SVM分别用于语音情感识别的识别率,结果显示粒子群优化径向基核SVM模型用于语音情感识别能获得明显的识别性能的提升。
-
单位国家开放大学; 江苏开放大学