摘要
针对传统RRT算法在规划路径中随机性较大,搜索效率较低且规划的路径不利于机器人移动等缺点,从三个方向进行改进。首先,对于随机树扩展时随机性较大的问题,将传统的扩展方向加入改进人工势场法约束,使得随机树偏向目标点生长;其次,将改进RRT算法规划的路径进行关键点提取,并优化路径;最后,将优化后的路径按照关键点分段使用改进评价函数的动态窗口法。实验表明,优化改进RRT算法相较于传统A*算法、传统RRT算法在路径长度、路径规划时间以及拐点等方面效果都更好,融合算法在复杂环境中规划出的路径能够很好的避开障碍物,路径更加平滑且更短。
- 单位