摘要

在过去的几年中,肺癌是癌症相关死亡的主要原因。提出一种针对低剂量计算机断层扫描(CT)影像精细化预处理条件下的SE-CapsNet分类方法,解决传统肺结节诊断方法中分类精度低、假阳性高等问题。改进胶囊神经网络分类算法:对最新Hinton的胶囊神经网络进行改进,引入新的非线性激活向量,避免全局向量压缩;采用特征重标定的方法,在特征通道层面进行模型优化。在标定的感兴趣区域,利用自动阈值法对CT影像进行预处理,并在中心结节处进行样本采样,获得预处理结果数据样本。选用内含1 010个病例的公开数据集LIDC-IDRI和某医院30个脱敏肿瘤患者病例,评估改进的SE-CapsNet算法,评价指标包括准确性、敏感性和特异性。在LIDC-IDRI数据集与医院数据集中,SE-CapsNet算法的平均准确率分别达到95.83%和94.67%,优于基于Caps Net分类算法的平均准确率。此外,在分类算法的耗时方面也具有明显优势,改进的胶囊网络能够更快地收敛,得到稳定的结果。