摘要

无人机通常搭载可见光波段传感器获取红-绿-蓝(Red-Green-Blue,RGB)影像,由于无人机RGB影像波段较少,影像的地物信息提取存在一定难度。该研究提出了一种匹配点云结合色调-饱和度-亮度(Hue-Saturation-Intensity,HSI)空间色彩分量的无人机RGB影像信息提取方法。首先以饱和度分量和红光波段构造了饱和度与红光比值指数,再结合可见光波段差异植被指数以及由匹配点云获得的地形特征对研究区正射影像进行分类。试验结果表明,本文方法的总体分类精度达到了91.11%,Kappa系数为0.895,证明匹配点云结合HSI空间色彩分量的方法提取无人机RGB影像信息是可行的,提取结果具有较高精度。相较于基于光谱特征的传统方法,该文方法引入匹配点云可以简单高效地提取影像中高程差异明显的地物,同时,结合HSI色彩分量能够有效弥补无人机RGB影像光谱特征较少的不足。