摘要
目的 针对目前智能垃圾分类设备使用的垃圾检测方法存在检测速度慢且模型权重文件较大等问题,提出一种基于YOLOv4的轻量化方法,以实现可回收垃圾的检测。方法 采用MobileNetV2轻量级网络为YOLOv4的主干网络,用深度可分离卷积来优化颈部和头部网络,以减少参数量和计算量,提高检测速度;在颈部网络中融入CBAM注意力模块,提高模型对目标特征信息的敏感度;使用K-means算法重新聚类,得到适合自建可回收数据集中检测目标的先验框。结果 实验结果表明,改进后模型的参数量减少为原始YOLOv4模型的17.0%,检测的平均精度达到96.78%,模型权重文件的大小为46.6 MB,约为YOLOv4模型权重文件的19.1%,检测速度为20.46帧/s,提高了约25.4%,检测精度和检测速度均满足实时检测要求。结论 改进的YOLOv4模型能够在检测可回收垃圾时保证较高的检测精度,同时具有较好的实时性。
-
单位福建工程学院; 物理学院