摘要
农作物估产对于国家制定粮食进出口政策和保障粮食安全具有重要意义。为构建高精度的作物估产模型,探讨了一种将信息扩散原理和关键期遥感数据相结合的农作物遥感估产方法。首先利用信息扩散原理将关键期遥感数据生成的NDVI和实割实测产量数据扩散到多维监控空间,采用模糊合成的方法建立关键期遥感数据和实割实测产量之间的离散关系模型。然后针对模型的稳定性和精度进行交叉验证,并与多元线性回归模型和BP神经网络模型进行对比。结果表明,利用信息扩散方法构建的遥感估产模型稳定性和精度都明显提高,与多元回归方法和BP神经网络方法相比,决定系数分别提高0.180、0.491,均方根误差分别降低173.10、487.79 k...
-
单位地表过程与资源生态国家重点实验室; 北京师范大学