摘要
针对麻雀搜索算法(SSA)在计算差分全球定位系统(DGPS)整周模糊度过程中出现的全局搜索能力弱、易陷入局部最优等问题,提出了混合策略麻雀搜索算法(HSSSA)。首先,通过引入Circle混沌映射初始化种群,提高初始种群的多样性,增强算法的全局寻优能力;其次,将粒子群算法中各个粒子的速度策略引入发现者位置更新公式中,提升算法寻优能力;最后,使用高斯变异策略对最优麻雀位置进行扰动,增强了跳出局部最优的能力。将所提算法应用于9个不同特征的基准函数进行实验,结果表明,HSSSA算法有着良好的寻优精度和收敛速度。在GPS/BDS实测数据的3 000个历元的解算中,相比传统LAMBDA算法和SSA算法,HSSSA算法有着更高的解算成功率,可达99.2%。
- 单位