摘要

提出一种基于马尔科夫链蒙特卡罗(MCMC)框架的子图学习方法,该方法通过构建马尔科夫链实现子图在状态空间中的迭代,最终得到用于匹配的最优子图,以有效提高图匹配的精度,减少离散值的影响。在此过程中,所提方法可以在一对一的匹配约束下有效保存成对的匹配点,同时避免了离散值和畸变值的影响。实验分别在合成图像数据集、真实图像数据集、3D模型数据集上展开,实验结果证明了所提方法在图匹配过程中的优越性。