摘要
针对图像修复过程中单一的字典迭代时间长、适应性差、修复效果不理想的缺点,提出了一种结合图像特征聚类与字典学习的改进的图像修复方式。首先破损的图像被分割成小块,并产生索引矩阵。然后使用控制核回归权值算法,对其进行图像聚类。通过对图像内在结构与未破损区域信息的挖掘,分割的图像块根据SKRW的相似性进行了分类。之后针对不同类型结构的图像,通过自适应局部明感字典学习的方式,获取每类字典的过完备字典。然后,通过构建自适应局部配适器,提高字典更新的收敛速度与稀疏字典的适应性。因为是通过多个字典匹配不同结构的图像,因此图像的稀疏表示更为准确。各个字典在达到收敛之前不断进行更新,而图像的稀疏因子也会随着改变。在对破损区域进行补丁更换之后,实现了对破损图像的修复。实验结果表明,该算法相较于目前的修复算法,视觉效果和客观评价上更好,且所需的修复时间更短。
- 单位