摘要
针对传统雪深反演中出现的系统偏差和跳变问题,该文提出一种结合遗传算法-反向传播(GA-BP)神经网络的雪深反演方法。首先通过二次项拟合有效分离出信噪比残差,进而对变换单位后的信噪比残差进行频谱分析,计算得到初步雪深值。最后,建立基于初步雪深值的GA-BP神经网络优化模型。以美国板块边界观测计划(PBO)提供的监测数据为例,并与传统方法对比分析,结果表明:采用GA-BP神经网络不仅能够削弱初步反演结果中出现的系统偏差,还能有效消除反演过程出现的跳变现象。采用PRN09和PRN24卫星反演,RMSE和MAE均分别小于0.083m和0.065m,R2有了明显提高,优于未处理初始雪深的情况。
-
单位广西空间信息与测绘重点实验室; 桂林理工大学