摘要
针对卫星视频条件下的点目标跟踪问题,提出了一种运动平滑约束的贝叶斯分类目标跟踪方法(BMoST)。本方法引入朴素贝叶斯分类器的思想,不依赖目标的任何先验概率,在运动平滑性约束下,利用灰度相似性特征来表达描述目标的似然度,并根据独立假设的贝叶斯定理,建立简化的分类器条件概率修正模型,通过该模型估计目标的后验概率,从而实现目标跟踪。同时,采用卡尔曼滤波辅助、优化跟踪处理,提高算法的稳健性。试验数据采用SkySat和吉林一号拍摄的视频各两段,对6个点目标进行跟踪试验。结果表明,本文提出的方法针对卫星视频的点目标跟踪效果良好,精度达到90%左右,且跟踪轨迹平滑,满足卫星视频后续高级处理和应用需要。
- 单位