摘要

针对存在缺失数据的超高维可加分位回归模型,本文提出一种有效的变量筛选方法.具体而言,将典型相关分析的思想引入到基于最优变换的最大相关系数,通过协变量和模型残差最优变换后的最大相关系数重要变量的边际贡献进行排序,从而进行变量筛选.然后,在筛选的基础上,利用稀疏光滑惩罚进一步做变量选择.所提变量筛选方法有三点优势:(1)基于最优变换的最大相关可以更全面的反映响应变量对协变量的非线性依赖结构;(2)在迭代过程中利用残差可以获取模型的相关信息,从而提高变量筛选的准确度;(3)变量筛选过程和模型估计分开,可以避免对冗余协变量的回归.在适当的条件下,证明了变量筛选方法的确定性独立筛选性质以及稀疏光滑惩罚下估计量的稀疏性和相合性.同时,通过蒙特卡罗模拟给出了所提方法的表现并通过一组小鼠基因芯片数据说明了所提方法的有效性.