基于GWO优化的CS-SVM轴承故障诊断

作者:马小平; 李博华; 张旭; 吴新忠
来源:煤矿机械, 2019, 40(05): 171-173.
DOI:10.13436/j.mkjx.201905056

摘要

灰狼算法(GWO)作为新型寻优算法,可用于轴承故障诊断。提出了采用GWO优化代价敏感支持向量机(CS-SVM)的诊断模型。通过经验模态分解(EMD)及主成分分析(PCA)进行特征提取并实现特征的降维,GWO优化CS-SVM参数来提升故障分类的准确率。以西储大学轴承数据为例,将比例为4∶1的训练样本和测试样本带入GWO优化的CS-SVM模型,诊断测试的准确率为96.67%,相比于传统PSO算法的准确率有所提升,收敛速度更快,表明了GWO优化的CS-SVM具有优越性。由此可以得出,GWO可用于轴承故障诊断的研究,验证了该算法模型的有效性。

全文