摘要

定义并探讨k-结构空间范畴的概念和基础性质,证明完全正则拓扑空间范畴和仿射代数簇范畴均可视为k结构空间范畴的子范畴.同时,讨论k-结构子空间与k-结构商空间的构造,并证明这两种构造分别对应于k-结构空间范畴的等值子和余等值子.最后,刻画了k-结构空间的Zariski拓扑的不可约性,并给出子空间覆盖定理的一个新视角下的有趣证明.