摘要
为提高煤矿瓦斯涌出量预测的精度和效率,提出一种基于改进的万有引力算法(IGSA)的BP神经网络IGSA-BP瓦斯涌出量预测模型。由于BP神经网络的初始权值和阈值对网络的预测精度和收敛速度有较大影响,采用改进的万有引力算法训练BP神经网络的初始权值和阈值,引入粒子群算法记忆与社会信息交流的思想,对万有引力算法(GSA)的速度与位置更新公式进行改进,采用Tent混沌映射增加GSA种群的多样性,使算法避免陷入局部极值并增强GSA的遍历搜索能力。结果表明,改进的万有引力BP神经网络预测结果的误差在0. 20 m3/min以内,与未经改进的万有引力BP神经网络和粒子群BP神经网络相比,预测精度分别提高了近5倍和10倍,说明该方法对煤矿瓦斯涌出量具有更好的预测精度和收敛速度。
- 单位