摘要

本文在全空间中研究一类带阻尼的散焦型分数阶薛定谔方程的柯西问题,阻尼系数是依赖于时间的,并且可能在无穷处消失.我们借助单调算子理论得到了弱解的存在性;利用Strichartz估计以及压缩不动点定理得到了局部解的唯一性;利用精细的能量估计和下半连续性讨论建立了L2和Hα∩Lp+2的能量衰减估计.