摘要

为了研究气体绝缘组合电器(gas insulated switchgear,GIS)的特高频局部放电脉冲序列识别算法,进而提高其绝缘故障诊断的正确率,提出利用限制对比度自适应直方图均衡化(contrast limited adaptive histogram equalization, CLAHE)算法对脉冲序列分布(phase resolved pulse sequence, PRPS)图谱进行预处理,实现放电脉冲目标的强化,从而增强数据集视觉特征的方法;然后计算增强图谱的均匀局部二值模式(uniform local binary pattern,ULBP)作为特征向量,利用Adaboost级联分类器不断提高识别率直至收敛,从而实现GIS内部绝缘故障类型的识别。实验结果表明:CLAHE增强将识别率的上限从93.36%提高到了96.09%;在变化的外施电压下,ULBP特征向量比传统图像特征的识别率提高了10.71%~15.72%;Adaboost强分类器在训练时对样本数量的要求降低了约1/3。故所提算法进一步扩大了优化空间,增强了传统算法的泛化能力,提高了训练效率。

全文