摘要
针对丰谷构造须四段储层具有埋深大、物性差、砂泥岩速度差异小等特点,综合采用基于神经网络的地震多属性反演与基于地质统计学的随机模拟进行砂体展布预测。该方法在目标曲线预分析和井震标定的基础上,首先根据地震属性与目标曲线的相关性,对地震属性进行排序与优选;然后通过概率神经网络训练,寻找目标曲线与多种地震属性的非线性关系,得到目标曲线的反演数据体;最后以反演体为约束条件,通过随机模拟的方法建立砂岩百分含量模型,完成砂体的井间预测。应用结果表明,该方法可以有效地减少砂体预测的多解性、提高砂体预测的精度,较为客观地展现各期砂体的空间分布以及相互叠置关系,具有一定应用价值。
-
单位中国石油大学(北京); 中国石油天然气股份有限公司吉林油田分公司勘探开发研究院; 油气资源与探测国家重点实验室