进化集成学习结合了集成学习和进化算法两方面的优势,并在机器学习、数据挖掘和模式识别等领域被广泛应用。首先对进化集成学习算法的理论基础、组成结构及分类情况进行了概述。然后根据进化算法在集成学习中的优化任务,从样本选择、特征选择、集成模型参数组合优化、集成模型结构优化以及集成模型融合策略优化几个方面对当前进化集成学习领域的一些代表性研究成果进行了详细的综述,并分析和总结了各种进化集成学习算法的特点。最后对现有的进化集成研究的优缺点进行探讨,并给出了未来的研究方向。