摘要

为了有效识别在线虚假评论,提出一种基于XGBoost-EasyEnsemble算法的虚假评论识别方法。首先,根据虚假评论的特点和提出的主观倾向值计算方法,建立多维特征模型;其次,针对评论数据中的类别不平衡问题,EasyEnsemble算法借助集成策略弥补欠采样的缺陷,充分利用样本信息;最后,选择"好而不同"的XGBoost模型作为基分类器训练最终分类器。基于Yelp网站上的评论数据,以AUC作为评价指标,与支持向量机、GBDT、神经网络等热门机器学习算法进行对比,验证了该方法的有效性。