摘要
针对飞机货舱火灾探测误报率偏高且响应速度较慢的问题,采用电化学式一氧化碳传感器来代替传统民机所用的光电式烟雾探测器来探测飞机货舱火灾,并提出了一种基于粒子群算法(Particle Swarm Optimization, PSO)优化长短期记忆(Long Short-Term Memory, LSTM)神经网络的一氧化碳浓度补偿模型。首先在自搭建试验平台采集密闭空间火灾的多项试验数据,然后用PSO优化LSTM的隐藏层神经元个数和学习率,提高了LSTM的预测精度。通过与其他3种神经网络对比,PSO改进LSTM模型在基于时间序列的火灾一氧化碳检测中具有更好的补偿效果。通过浓度补偿,可以使电化学式一氧化碳探测器在飞机货舱火灾发生的早期阶段进行更准确的探测预警。
- 单位