摘要
传统的情感分析方法主要针对句子、微博等形式的短文本,而对话长文本具有篇幅长、对话双方情感不同且情感易随对话发生变化等特点,使对话长文本中用户多重情感集成困难、情感分析任务精度低.为此,提出子事件交互模型TSI (Topic Subevents Interaction)、预训练模型ERNIE (Enhanced Language Representation with Informative Entities)和循环卷积神经网络(RecurrentConvolutionalNeuralNetworks,RCNN)相结合的对话长文本情感分析模型(TSIwith ERNIE-RCNN,TER).该模型通过动态滑动窗口抽取子事件,保留文本关键特征,降低文本冗余度,基于抽取的子事件分析对话双方的情感来识别情感主体,并集成各子事件的情感特征来解决对话双方情感不一致的问题.在真实数据上的实验结果表明,TER的精确率、召回率与F1均优于现有模型.
- 单位