摘要
如何从带噪语音信号中恢复出干净的语音信号一直都是信号处理领域的热点问题。近年来研究者相继提出了一些基于字典学习和稀疏表示的单通道语音增强算法,这些算法利用语音信号在时频域上的稀疏特性,通过学习训练数据样本的结构特征和规律来构造相应的字典,再对带噪语音信号进行投影以估计出干净语音信号。针对训练样本与测试数据不匹配的情况,有监督类的非负矩阵分解方法与基于统计模型的传统语音增强方法相结合,在增强阶段对语音字典和噪声字典进行更新,从而估计出干净语音信号。该文首先介绍了单通道情况下语音增强的信号模型,然后对4种典型的增强方法进行了阐述,最后对未来可能的研究热点进行了展望。
- 单位