摘要
为了构建准确表征滚动轴承退化过程的趋势性健康度指标,提高滚动轴承剩余使用寿命(Remaining Useful Life,RUL)的预测精度,提出了一种结合长短期记忆(Long-ShortTermMemory,LSTM)和自注意力(Self-Attention)机制的神经网络模型(LSTM-SA)用于滚动轴承RUL预测。利用包络解调获得原始信号的包络谱,再将包络谱分段并计算对应频段的皮尔逊相关系数,得到具有单调性和趋势性的退化特征;将退化特征归一化处理后作为LSTM-SA模型的输入,并利用LSTM自适应提取退化特征时间上的内部相关性以及Self-Attention对关键信息的筛选,消除无用信息的干扰,挖掘深层次特征,构建健康度指标并得到退化曲线;确定失效阈值,利用最小二乘法拟合退化曲线,预测寿命失效点,实现滚动轴承的RUL预测。在PHM2012数据集上的实验结果表明,所提出的方法相比于其他文献,平均绝对误差分别降低了43.18%,62.57%和59.44%,平均得分分别提高了10.87%,45.71%和34.21%;在工程实际数据中的实验结果表明,所提出方法的平均预测误差分别比Standard-RNN和CNN方法降低了39.58%和74.86%。
-
单位中国石油天然气股份有限公司; 北京化工大学