摘要
为了保证滚刀加工质量的一致性,缩短滚刀工艺文件的制定周期,在对滚刀的粗加工工艺进行研究后,采用机器学习方法,将滚刀的几何特征参数作为反向传播(BP)神经网络的输入变量,滚刀粗加工中每个工序的工艺参数作为输出结果,对滚刀粗加工过程中每个工序的工艺参数进行预测。针对传统BP神经网络最速下降法收敛速度慢的问题,在研究了“锯齿现象”产生的原因后,提出了一种“修正下降方向”的反向传播神经网络算法。仿真结果说明,与传统BP神经网络相比,同等条件下,改进的BP神经网络收敛速度加快,预测结果可靠。
-
单位西安工业大学; 机电工程学院