摘要

"分解–预测–重构"模式作为一种新的预测思路,已被广泛用于非平稳径流序列的中长期预测。但由于分解之后高频分量预测精度较差,致使该模式的预测效果并不理想。本文采用径向基神经网络(RBF)、自回归模型(AR)以及均生函数模型(MGF)分别对陕北无定河丁家沟站实测径流由经验模态分解(EMD)得到的高频分量进行预测,利用贝叶斯模型加权平均法(BMA)对其集成,着重分析比较了基于BMA的集成方法和单一模型的预测效果,验证了BMA方法在处理高频分量误差控制方面的可行性。结果显示基于BMA的高频分量预测的相对误差绝对平均值较单一模型有所降低,径流预测整体精度有显著提升。这表明BMA集成方法能够有效地降低径流序列中高频分量的预测误差,提高整体预测精度,可作为一种有效的方法,供其他类似非平稳预测问题所借鉴。