DBSCAN是一种经典的基于密度聚类算法,能够自动确定簇的数量,对任意形状的簇都能有效处理.DBSCAN算法需要人为确定Eps和minPts2个参数,导致聚类过程需人工干预才能进行.在DBSCAN的基础上提出了SA-DBSCAN聚类算法,通过分析数据集统计特性来自动确定Eps和minPts参数,从而避免了聚类过程的人工干预,实现聚类过程的全自动化.实验表明,SA-DBSCAN能够选择合理的Eps和minPts参数并得到较高准确度的聚类结果.