摘要
针对旋转机械故障识别率偏低的问题,提出一种基于EEMD与模糊信息熵的旋转机械故障诊断方法.该方法结合EEMD分解和模糊信息熵在特征提取方面的优势,构造出一种能够精细度量不同类别振动信号故障概率复杂度的特征集合.首先将原振动信号进行EEMD分解,获得若干个本征模态函数(IMFs);计算出前5个高频IMF分量的模糊信息熵组成高维特征集;利用LPP对高维特征集进行维数约简剔除冗余不相关特征;最后将约简后的样本集输入到KNN分类器中进行故障识别.用双跨转子实验台采集的数据对所述方法进行验证,并与EMD模糊熵、EMD模糊信息熵、EEMD模糊熵方法进行故障识别率对比,结果表明该方法能够有效提取转子振动信号的故障特征,并且具有更高的故障识别率.
-
单位兰州理工大学; 中国人民武装警察部队工程大学; 机电工程学院