摘要
传统的大数据中价值信息提取方法采用基于模糊学习理论的数据融合处理方法,将预定学习序列输入神经网络,通过模糊启发,对预定序列进行多模型映射,此方法模型复杂,且启发率低。提出一种大数据子集特征遗忘启发的价值信息提取方法,对大数据进行非线性映射归一化,使每个子集实现并行运算,通过混沌方法提取子集特征,并建立混沌模型下的子集特征遗忘启发链,针对不同子集中的价值信息,依据遗忘启发链实现启发,提取价值信息。采用一组大数据下的伪随机价值信息进行提取测试,仿真实验表明,本文价值信息提取方法的提取率达到了98%,对于大数据下的价值信息提取具有很好的指导意义。
-
单位河南广播电视大学